Björklund Pharma

  • Home
  • Company
  • Science & Innovation
  • Publications
  • Media
  • Contact
    • Contact Form

Serum Zinc and Copper Levels in Autistic Children

December 8, 2014 By admin

NeuroReport-25-15-2014In collaboration with Chinese researchers, Geir Bjørklund investigated the serum levels of zinc (Zn) and copper (Cu) in 60 Chinese children with autism (48 boys, 12 girls) and a control group of 60 healthy sex-matched and age-matched individuals. The researchers also evaluated the severity of autism using the Childhood Autism Rating Scale (CARS) score. 

The mean serum Zn levels and Zn/Cu ratio in the study were significantly lower in the autistic children compared with the control group (P<0.001). At the same time were the serum Cu levels significantly higher in the autistic children compared with the control group (P<0.001). It was in the study found a significant negative association between the Zn/Cu ratio and CARS scores (r=-0.345, P=0.007). 

The original article is published in NeuroReport (2014; 25 (15): 1216–1220). 

 

Si-Ou Li, Jia-Liang Wang, Geir Bjørklund, Wei-Na Zhao, and Chang-Hao Yin

Serum copper and zinc levels in individuals with autism spectrum disorders

Neuroreport 2014; 25 (15): 1216-1220

 

ABSTRACT

Trace elements play a critical role in the pathogenesis of autism spectrum disorders (ASD). The aim of this study was to investigate the serum levels of zinc (Zn) and copper (Cu) in Chinese children with ASD. Sixty patients (48 males, 12 females) diagnosed with ASD and 60 healthy sex-matched and age-matched control participants were assessed for serum Zn and Cu content at admission. The severity of ASD was also evaluated using the Childhood Autism Rating Scale (CARS) score. The results indicated that the mean serum Zn levels and Zn/Cu ratio were significantly lower in children with ASD compared with normal cases (P<0.001, respectively), whereas serum Cu levels were significantly higher (P<0.001). There was a significant negative association between Zn/Cu and CARS scores (r=-0.345, P=0.007). On the basis of the receiver operating characteristic curve, the optimal cut-off value of serum levels of Zn/Cu as an indicator for an auxiliary diagnosis of autism was projected to be 0.665, which yielded a sensitivity of 90.0% and a specificity of 91.7%; the area under the curve was 0.968 (95% confidence interval, 0.943-0.993). In conclusion, these results suggested an association between serum levels of Zn and Cu and ASD among Chinese patients, and the Zn/Cu ratio could be considered a biomarker of ASD.

 

Filed Under: Company News, Research News Tagged With: Autism, Brain, Copper, Zinc

The Role of Zinc and Copper in Autism Spectrum Disorders

December 8, 2014 By admin

Acta-Neurobiol-Exp-2013-2Children with Autism spectrum disorders (ASDs) appear to be at risk for zinc (Zn) deficiency, copper (Cu) toxicity, have often low Zn/Cu ratio, and often disturbed metallothionein (MT) system functioning. The evidence presented in this paper suggests that providing Zn to autistic children may be an important component of a treatment protocol, especially in children with Zn deficiency. It is important to monitor and follow the values for both Cu and Zn together during Zn therapy, because these two trace elements are both antagonists in function, and essential for living cells. 

The review article by Geir Bjørklund is published in Acta Neurobiologiae Experimentalis (2013; 73 (2): 225–236). This peer-reviewed journal is published by Nencki Institute of Experimental Biology in Warsaw, Poland.

 

Geir Bjørklund

The role of zinc and copper in autism spectrum disorders

Acta Neurobiol Exp (Wars) 2013; 73 (2): 225-236 

 

ABSTRACT

Autism spectrum disorders (ASDs) are a group of developmental disabilities that can cause significant social, communication and behavioral challenges. Several studies have suggested a disturbance in the copper (Cu) and zinc (Zn) metabolism in ASDs. Zinc deficiency, excess Cu levels, and low Zn/Cu ratio are common in children diagnosed with an ASD. The literature also suggests that mercury accumulation may occur as a cause or consequence of metallothionein (MT) dysfunction in children diagnosed with an ASD, which may be one of the causes of Zn deficiency. MTs are proteins with important functions in metal metabolism and protection. Zinc and Cu bind to and participate in the control of the synthesis of MT proteins. Studies indicate that the GABAergic system may be involved in ASDs, and that Zn and Cu may play a role in this system.

 

Filed Under: Company News, Research News Tagged With: Autism, Brain, Copper, Mercury, Zinc

Recent Posts

  • New COVID-19 Research Provides Insights on the Crucial Role of Zinc in Protein Targets of Drugs That Block SARS-CoV-2 Infection
  • A Possible New Medicine for Multiple Sclerosis?
  • Thymosin Beta 4 in Dry Eye Syndrome
  • The Role of Thymosin Beta 4 in COVID-19 Treatment
  • Zinc Deficiency: A Globally Widespread Ailment

Company News

  • New COVID-19 Research Provides Insights on the Crucial Role of Zinc in Protein Targets of Drugs That Block SARS-CoV-2 Infection
  • A Possible New Medicine for Multiple Sclerosis?
  • Thymosin Beta 4 in Dry Eye Syndrome
  • The Role of Thymosin Beta 4 in COVID-19 Treatment
  • Zinc Deficiency: A Globally Widespread Ailment
  • Email
  • Facebook
  • Google+
  • LinkedIn
  • Twitter
  • YouTube

RSS CONEM News

  • DAJTEMU
  • Better Brain Health – We Are What We Eat
  • Zinc, Copper, and Autism Spectrum Disorder
  • Nutritional Minerals and the Periodic Table
  • Semey Revisited: The legacy of nuclear testing in Kazakhstan

Contact Us

Björklund Pharma AS
Toften 24
8610 Mo i Rana
Norway

Phone: +47 411 11 942
Email: info(at)bjorklundpharma.com

Copyright © 2023 Björklund Pharma AS